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EXTENSION OF RELATIONAL AND CONDITIONAL EVENT 
ALGEBRA TO RANDOM SETS WITH APPLICATIONS TO 

DATA FUSION 

I.R. GOODMAN AND G.F. KRAMER* 

Abstract. Conditional event algebra (CEA) was developed in order to represent conditional 
probabilities with differing antecedents by the probability evaluation of well-defined individual 
"conditional" events in a single larger space extending the original unconditional one. These 
conditional events can then be combined logically before being evaluated. A major application of 
CEA is to data fusion problems, especially the testing of hypotheses concerning the similarity or 
redundancy among inference rules through use of probabilistic distance functions which critically 
require probabilistic conjunctions of conditional events. Relational event algebra (REA) is a 
further extension of CEA, whereby functions of probabilities formally representing single event 
probabilities - not just divisions as in the case of CEA - are shown to represent actual 
"relational" events relative to appropriately determined larger probability spaces. Analogously, 
utilizing the logical combinations of such relational events allows for testing of hypotheses of 
similarity between data fusion models represented by functions of probabilities. Independent of, 
and prior to this work, it was proven that a major portion of fuzzy logic - a basic tool for treating 
natural language descriptions - can be directly related to probability theory via the use of one 
point random set coverage functions. In this paper, it is demonstrated that a natural extension of 
the one point coverage link between fuzzy logic and random set theory can be used in conjunction 
with CEA and REA to test for similarity of natural language descriptions. 

Key words. Conditional event algebra. Conditional probability, Relational event algebra, 
Functions of probabilities, Random sets. One point coverage functions. Probabilistic distances, 
Fuzzy Logic, Data Fusion. 

AMS(MOS) subject classifications . 03B48, 60A05, 60A99, 03B52, 60D05, 52A22. 

1. Introduction. The work carried out here is motivated directly by the 
basic data fusion problem: Consider a collection of multi-source information, 
which, for convenience, we call "models", in the form of descriptions and/or 
rules of inference concerning a given situation. The sources may be expert-based 
or sensor system-based, utilizing the medium of natural language or probability, 
or a mixture of both. The main task, then, is to determine: 

Goal 1. Which models can be considered similar enough to be combined or 
reduced in some way and which models are dissimilar so as to be considered 
inconsistent or contradictory and kept apart possibly until further arriving 
evidence resolves the issue. 

Goal 2. Combine models declared as pertaining to the same situation. 
Goals 1 and 2 are actually extensions of classical hypotheses testing and 

estimation, respectively, applied to those situations where the relevant 
probability distributions are either not available from standard procedures or 
involve, at least initially, non-probabilistic concepts such as natural language. 

* NCCOSC RDTE DIV (NRaD), Code 4221, Seaside, San Diego, CA 92152-7446.   The work of 
both authors is supported by the NRaD Independent Research Program as Project ZU07. 
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1.1. Statement of the problem. In this paper, we consider only 
Goal 1, with future efforts to be directed toward Goal 2. Furthermore, this is 
restricted to pairwise testing of hypotheses for sameness, when the two models 
in question are given in the formal truth-functional forms 

(1.1) 

Model 1: P(a) = f(P(c),P(d),P(e),P(h),...) 

vs. 

Model 2 : P(Jb) = g(P(c),P(d),P(e),P(h),...) 

where / g :[0,l]m -» [0,1] are known functions and contributing events 
c,d,e,h,... all belong to probability space (Q.,B,P), i.e., c, d, e, h,... e B, a 
boolean or sigma-algebra over ß associated with probability measure P. In 
general, probability involves non-truth-functional relations, such as the joint or 
conjunctive probability of two events not being a function of the individual 
marginal probability evaluations of the events. In light of this fact, in most 
situations, the "events" a and b in the left-hand side of eq.(l.l) are only 
formalisms representing overall "probabilities" for Models 1 and 2, respectively. 
However, if events c,d,e,h,... are all infinite left rays of real one-dimensional 
space, and/ = g is any copula and P on the left-hand side of eq.(l.l) is replaced 
by the joint probability measure P0 determined by/ (see, e.g., Sklar's copula 
theorem [28]), then a and b actually exist in the form of corresponding infinite 
left rays in multidimensional real space and eq.(l.l) reduces to an actual truth- 
functional form. 

Returning back to the general case, suppose legitimate events a and b could 
be explicitly obtained in eq.(l.l) lying in some appropriate boolean or sigma 
algebra B0 extending B in the sense of containing an isomorphic imbedding of all 
of the contributing events c, d, e, h  independent of the choice of P, but so 
that for each P, the probability space (Q0^ß0VP0) extends (Cl,B,P), and suppose 
Pa(a&b) could be evaluated explicitly, then one could compute any of several 
natural probability distance functions MP (a,b). Examples of such include: 

Dp (a,b), RP (a,b), EP (a,b); where DP (a,b) is the absolute probability distance 
0 0 0 0 

between a and b (actually a pseudometric over (Q,5,P), see Kappos [21]); 
RP (a,b) is the relative probability distance between a and b; and EP (a,b) is a 

0 0 

symmetrized log-conditional probability form between a and b. (See Section 1.4 
or [13], [14].) For example, using the usual boolean notation (& for 
conjunction, v for disjunction, ( )' for complement, + for symmetric difference 
or sum, < for subevent of, etc.), 

(1.2) Dp(a,b) = P0{a +b) = P0(a '& o) + P0(a&b) = P0(a) +P0(b) - 2P0(a & b). 
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Then, by replacing the formalisms P(a), P(b) in eq.(l.l)), by the probabilities 
PM = j{P{c),P{d),P{e),...) and P0(b) = g(P(.c)J>(d)J>(.e),...), together with the 
assumption that the evaluation P0(a & b) is meaningful and can be explicitly 
determined, the full evaluation of DP (a,b) can be obtained via eq.(1.2).  In turn, 

0 

assuming for simplicity that the higher order probability distribution of the 
relative atom evaluations P0(a & b), P0(a'& b), P0(a & b') are - as P and a and 
b are allowed to vary - uniformly distributed over the natural simplex of 
possible values, the cdfFDofDP (a,b) under the hypothesis of being not identical 

can be ascertained. Thus, using FD and the "statistic" DP (a,b)  one can test the 
0 

hypotheses that a and b are different or the same, up to P0-measure zero. (See 
Sections 1.4, 1.5 for more details.) 

Indeed, it has been shown that two relatively new mathematical tools - 
conditional event algebra (CEA) and the more general relational event algebra 
(REA) - can be used to legitimize a and b in eq.(l.l): CEA, developed prior to 
REA, yields the existence and construction of such a and b when functions / 
and g are identical to ordinary arithmetic division for two arguments P(c), P(d)) 
in Model 1 with c < d, and P(e), P(h) in Model 2 with e < h, i.e., for 
conditional probabilities [18]. REA extends this to other classes of functions of 
probabilities, including, weighted linear combinations, weighted exponentials, 
and polynomials and series, among other functions [13]. 

Finally, it is of interest to be able to apply the above procedure when the 
models in question are provided through natural language descriptions. In this 
case, we first convert the natural language descriptions to a corresponding fuzzy 
logic one. Though any choice of fuzzy logic still yields a truth-functional logic, 
while probability logic is non-truth functional in general, it is interesting to 
note that the now well-developed one point random set coverage function 
representation of various types of fuzzy logic [10] bridges this gap: the logic of 
one point coverages is truth-functional (thanks to the ability to use Sklar's 
copula theorem here [28]). In turn, this structure fits the format of eq.(l.l) and 
one can then apply CEA and/or REA, as before, to obtain full evaluations of 
the natural event probabilistic distance-related functions and thus test hypotheses 
for similarity. 

1.2. Overview of effort. Preliminary aspects of this work have been 
published in [13], [14]. But, this paper provides for the first time a unified, 
cohesive approach to the problem as stated in Section 1.1 for both direct 
probabilistic and natural language-based formulations. Section 1.3 provides 
some specific examples of models which can be tested for similarity. Section 
1.4 gives some additional details on the computation and tightest bounds with 
respect to individual event probabilities of some basic probability distance 
functions when the conjunctive probability is not available. Section 1.5 
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summarizes the distributions of these probability distance functions as test 
statistics and the associated tests of hypotheses. Sections 2 and 3 give 
summaries of CEA and REA, respectively, while Section 4 provides the 
background for one point random set coverage representations of fuzzy logic. 
Section 5 shows how CEA can be combined with one point coverage theory to 
yield a sound and computable extension of CEA and (unconditional) fuzzy logic 
to conditional fuzzy logic. Finally, Section 6 reconsiders the examples presented 
in Section 1.3 and sketches implementation for testing similarity hypotheses. 

1.3 Some examples of models. The following three examples 
provide some particular illustrations of the fundamental problem. 

Example 1. Models as weighted linear functions of 
probabilities of possibly overlapping events. Consider the 
estimation of the probability of enemy attack tomorrow at the shore from two 
different experts who take into account the contributing probabilities of good 
weather holding, a calm sea state, and the enemy having an adequate supply of 
type 1 weapons. In the simplest kind of modeling the experts may provide their 
respective probabilities as weighted sums of contributing probabilities of 
possibly non-overlapping events 

(1.3) 

Model 1: P(a) = (wu/»(c)) + (wnP(d)) + (w13P(e)) 

vs. 

Model 2 : P(b) = (w21/>(c)) + (w22P(d)) + (w23P(e)) 

where 0 < w^:< 1 , wn + wa + wl3 = 1, i =1,2; a = enemy attacks tomorrow, 
according to Expert l;b- enemy attacks tomorrow, according to Expert 2; c = 
good weather will hold; d = calm sea state will hold; e = enemy has adequate 
supply of type 1 weapons. 

Note again that c,d,e in general are not disjoint events so that the total 
probability theorem is not applicable here. It can be readily shown no solution 
exists independent of all choices of P in eq.(1.3) when a, b, c, d, e all belong 
literally to the same probability space. 

Example 2.    Models as conditional probabilities.    Here, 

(1.4) 

Model 1: P(a) = P(c I d) (= P(c & d)l P(d)) 

vs. 

Model 2 : P(b) = P(c I e) (= P(c & e)l />(«)) 

Models 1 and 2 could represent, e.g., two inference rules "if d, then c", "if e, 
then c", or two posterior descriptions of parameter c via different data sources 
corresponding to events d,e. Lewis' Theorem ([22] - see also comments in 
Section 2.1 here) directly shows that in general no possible a, b, c, d, e can exist 
in the same probability space, independent of the choice of probability measure. 
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Example 3. Models as natural language descriptions. In this case, 
two experts independently provide their opinions concerning the same situation 
of interest: namely the description of an enemy ship relative to length and 
visible weaponry of a certain type. 

(1.5) 

Model 1 : Ship A is very long, or has a large number of q - type weapons on deck 

vs. 

Model 2 :  Ship A is fairly long, or if intelligence source 1 is reasonably accurate, 

it has a medium quantity of q - type weapons on deck 

Translating the natural language form in eq.(1.5) to fuzzy logic form [4]: 

(1.6) 

Model 1: t{a) = (f,      (lngth(A)))2 v, f       (#(ß)) 
long 1 large 

vs. 

Model2: r(fc) = (f,     (lngth(A)))1'5 vo (f If        t )(#(ß),D 
long 2   medium    accurate 

where V[ and v2 are appropriately chosen fuzzy logic disjunction operators over 
[0,1]2. Also, (non-italic) fc:D-> [0,1] denotes a fuzzy set membership function 
corresponding to attribute c; flong:pos.reals-> [0,1] , f^pos-reals -4 [0,1] , 
fmedium :{0,1,2,3,...} -» [0,1], faccurate : class of intelligence sources -> [0,1] 
are appropriately determined fuzzy set membership functions representing the 
attributes "long", "large", "medium", "accurate", respectively; 

(fmedium I ^curate):{0,1,2,3,...} x class of intelligence sources -> [0,1] is a 
conditional fuzzy set membership function (to be considered in more detail in 
Section 5) representing the "if-then" statement. Also, t(d) = truth or possibility 
of the description of ship A using Model 1; t(b) = truth or possibility of the 
description of ship A using Model 2; where A = ship A, Q = collection of q-type 
weapons on deck of A, L = intelligence source 1; and measurement functions 
lngth( ) = length of () in feet, #() = no. of (). 

In this example the issue of determining whether one could find actual 
events a,b, such that they and all contributing events he in the same probability 
space requires first the conversion of the fuzzy logic models in eq.(1.6) to 
probability form. This is seen to be possible for both the unconditional and 
conditional cases via the one point random set coverage representation of fuzzy 
sets and certain fuzzy logics. (For the unconditional case, see Section 4; for the 
conditional case see Section 5.) Thus, Lewis' result again is applicable, showing 
a negative answer to the above question. 

Hence, all three examples again point up the need -- if such constructions 
can be accomplished -- to obtain an appropriate probability space properly 
extending the original given one where events a, b can be found, as well as the 
isomorphic imbedding of the contributing events (but, not the original events !) 
in eq.(l.l), independent of the choice of the given probability measure. 
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1.4. Probability distance functions. We summarize here some 
basic candidate probability distance functions MP(a,b) for any events a, b 
belonging to a probability space (Cl,B,P).  The absolute distance DPa{a,b) has 

already been defined in eq.(l.2) for aj> assumed to belong to a probability space 
(Q0J50,P0) extending (Q.,B,P). For simplicity here, we consider any a, b 
belonging to probability space (Q,2?,P). First, the naive distance NP(a,b) is 
given by the absolute difference of probabilities 

(1.7) NP(a,b) = \P(a)-P(b)\ = \P{a '& b) -P(a&b)\. 

Here, there is no need to determine P(a8d?) and clearly NP is a pseudometric 
relative to probability space (fl,B,P). On the other hand, a chief drawback is 
that there can be many events a, b which have probabilities near a half and are 
either disjoint or close to being disjoint, yet NP(a,b) is small, while DP(a,b) for 
such cases remains appropriately high. However, a drawback for the latter occurs 
when, in addition to a,b being nearly disjoint, both events have low 
probabilities, in which case DP{a,b) remains small, not reflecting the distinctness 
between the events. A perhaps more satisfactory distance function for this 
situation is the relative probability distance R^afr) given as 

(1.8) RP(a,b) = dP(a,b) IP{a \b) = (P(&)+P(b)-2P(a&b)) /(P(a) +P(b) - P(a &b)\ 
= (P(a'&b) + P(a&b'))/(P(a'& b) + P(a & b') + P(a & b)) 

noting that the last example of near-disjoint small probability events yields a 
value of RP(a,b) close to unity, not zero as for DP{a,b). Note also in eqs.(1.7) 
and (1.8) the existence of both the relative atom and the marginal-conjunction 
forms. It can be shown (using a tedious relative atom argument) that RP is 
also a pseudometric relative to probability space (Q,B,P), just as DP is. (Another 
probability "distance" function is a symmetrization of conditional probability 
[13].) 

Various tradeoffs for the use of each of the above functions can be compiled. 
In addition, one can pose a number of questions concerning the characterization 
of these and possibly other probability distance functions ([13], Sects.1,2). 

1.5. Additional properties of probability distance functions 
and tests of hypotheses. First, it should be remarked that eqs.(1.2) and 
(1.8), again point out that full computations of DP(a,b), RP(a,b), EP(a,b) (but, 
of course not NP(a,b)) require knowledge of the two marginal probabilities P(a), 
P(b), as well as the conjunctive probability P{a & b). When the latter is 
missing, we can consider the well-known extended Fr6chet-Hailperin tightest 
bounds [20], [3] in terms of the marginal probabilities for P(a&b) and P{a \b): 

(1.9) max(/»(a) + P{b) -l,0)<P(a&b)< min(P(a),P(b)) 
<wP(a)+ (l-w)P(b) 
< max(P(a),P(b)) < P{a vb)< min(P(a) + P(b), 1), 
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for any weight w, 0 < w < 1. In turn, applying inequality (1.9) to eqs.(1.2) and 
(1.8) yields the corresponding tightest bounds on the computations of the 
probability distance functions as 

(1.10) NP{a,b) < D^a,b) < min(P(a)+P(fc), 2-P{a)-P{b)), 
(1.11) 1 - min(P(a)/P(b),P(b)/P(a)) < RP(a,b) < min(l, 2-P(a)-P(b)). 

Inspection of inequalities (1.10) and (1.11) shows that considerable errors 
can be made in estimating the probability distance functions when P(a&b) is not 
obtainable. In effect, one of the roles played by CEA and REA is to address this 
issue through the determination of such conjunctive probabilities when a and b 
represent complex models as in Examples 1-3. (See Section 6.) 

Eqs.(1.2), (1.7), and (1.8) also show that these probability distance 
functions can be expressed as functions of the relative atomic forms P(a & b), 
Pia '& b), P(a & b'). Then, making a basic higher order probability assumption 
that these three quantities can be considered also with respect to different choices 
of P, a, and b as random variables are jointly uniformly distributed over the 
natural simplex of values {(s,t,u): 0 <s,t,u <1 , s + t+ u < 1} c [0,1]3, when a 
* b, one can then readily derive by standard transformation of probability 
techniques the corresponding cdf FM for each function M = N,D,R,E. Thus, 

(1.12) FN(t)=l-(l-t)\     FD(t) = f (3-2t),       FÄ(t)=f\ 

for all 0<f <1. To apply the above to testing hypotheses, we simply proceed in 
the usual way, where the null hypothesis is H0: a *■ b and the alternative is H^ a 
= b. Here, for any observed (i.e., fully computable) probability distance function 
MP(a,b), we 

{accept H0(and reject H,) iff Mp(a,b) > C  , 

accept H[(and reject H0) iff Mp(a,b) < Ca 

where threshold Ca is pre-determined by the significance (or type-one error) level 

(1.14) a = /»(reject H01 H0 true) = FMp(Ca). 

Thus, for all similar tests using the same statistic outcome MP(a,b), but 
possibly differing significance levels a (and hence thresholds Ca), considering 
the fixed significant level 

(1.15) a0 = ¥m(MP(a,b)) = P(reject H0 using MP(a,b) I H0 holds), 

Ilf significance level a < an, then accept H0, 

If significance level a > a0, then accept H,. 
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2. Conditional event algebra. Conditional event algebra is 
concerned with the following problem: Given any probability space (Q.,B,P), 
find a space (ß0,P0) and an associated mapping \(r. B2-*!!,, — with B0 (and well- 
defined operations over it representing conjunction, disjunction, and negation in 
some sense) and y not dependent on any particular choice of P — such that 
y/(.,ß): B-*B0 is an isomorphic imbedding and the following compatibility 
condition holds with respect to conditional probability: 

(2.1) P0(yKa,b)) = P(a\b), for all a, b in B, with P{b) > 0. 

When (£0,P0;v) exists, call it a conditional event algebra (CEA) extending 
(£1,B,P) and call each y(a,b) a conditional event. For convenience, use the 
notation (a\b) for yKa,b). When Q0 exists such that (ß0,50,P0) is a probability 
space extending (Q,fi,P), call (Q0,P0,P0; y) a boolean CEA extension. Finally, 
call any boolean CEA extension with (Q0,B0,P0) = (Q,fi,P) a trivializing 
extension. 

A basic motivation for developing CEA is as follows: Note first that a 
natural numerical assignment of uncertainty to an inference rule or conditional 
statement in the form "if b, then a" (or "a, given b", or perhaps even "a is 
partially caused by b") when a,b are events (denoted usually as the consequent, 
antecedent, respectively) belonging to a probability space (ß,B,P) is the 
conditional probability P{a\b), i.e., formally (noting a can be replaced by a&b) 

(2.2) P(iffc,thena) = P(alfc). 

(A number of individuals have considered this assignment as a natural one. See, 
e.g., Stalnaker [29], Adams [1], Rowe [26].) Then, analogous to the use of 
ordinary unconditional probability logic, which employs probability 
assignments for any well-defined logical / boolean operations on events, it is 
also natural to inquire if a "conditional probability logic" (or CEA), can be 
derived, based on sound principles, which is applicable to inference rules. 

2.1. Additional general comments. For the following special 
cases, the problem of constructing a specific CEA extension of the original 
probability space can actually be avoided: 

1. All antecedents are identical, with consequents possibly varying. In this 
case, the traditional development of conditional probability theory is adequate to 
handle computations such as the conjunctions, disjunctions and negations 
applied to the statements "if b, then a" , "if b, then c", where, similar to the 
interpretation in eq.(2.2), assuming P{b) > 0 

(2.3) P(if b, then a) = P(a\b) = P„(a),    P(if b, then c) = P(c\b) = Pb(c); 
(2.4) P((if b, then a)&(if b, then c)) = P(a&c \b) = Pb(a&c), 
(2.5) P((if b, then a)\ (if b, then c)) = P{avc \b) = Pb(a v c) , 
(2.6) P(not(if b, then a)) = P(a \b) = Pb(a ) , 
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where Pb is the standard notation for the conditional probability operator P(.\b), 
a legitimate probability measure over all of B, but also restricted, without loss 
of generality, to the trace boolean (or sigma) algebra b&B = {b&A: d in B}.  A 
further special case of this situation is when all antecedents are identical to ß, so 
that all unconditional statements or events such as a, c can be interpreted as the 
special conditionals "if ß, then a" , "if ß, then c", respectively. 

2. Conditional statements are assumed statistically independent, with 
differing antecedents. When it seems intuitively obvious that the conditional 
expressions in question should not be considered dependent on each other, one 
can make the reasonable assumption that, with the analogue of eq.(2.3) holding, 

(2.7) P(if b, then a) = P(a\ b),     P(if d, then c) = P(c \d), 

the usual laws of probability are applicable and 

(2.8) P((if b, then a)&(if d, then c)) = P(a \b)P(c \d), 
(2.9) P((if b, then a)v (if d, then c)) = P{a \b) + P(c \d) - (P(a \b)P{c \d)). 

A reasonable sufficient condition to assume independence of the conditional 
expressions is that a&b, b are P-independent of c&d, d (for each of four possible 
combinations of pairs). i 

3. While the actual structure of a specific CEA may not be known, it is 
reasonable to assume that a boolean one exists, so that all laws of probability 
are applicable. Rowe tacitly makes this assumption in his work ([26], Chapter 
8) in applying parts of the Frechet-Hailperin bounds - as well as further P- 
independence reductions in the spirit of Comment 2 above.   Thus, inequality 
(1.9) applied formally to conditionals "if b, then a", "if d, then c" with 
compatibility relation (2.7) yields the following bounds in terms of the 
marginal conditional probabilities P(a\b), P(c\d), assuming P(b), P(d) > 0: 

(2.10) max(P(a \b) +P{c \d) -1, 0) < P((if b, then a)&(if d, then c)) 
< min (P(a \b)J>(c \d))    <(w P(a \b)) + ((l-tv)P(c \d)) 
< max( P(a lfc)P(c \d)) < P((if b, then a)v(if d, then c))< min^a \b) +P(c\d),l). 

Again, apropos to earlier comments, inspection of eq.(2.10) shows that 
considerable errors can arise in not being able to determine specific probabilistic 
conjunctions and disjunctions via some CEA. 

At first glance one may propose that there already exists a candidate within 
classical logic which can generate a trivializing CEA: the material conditional 
operator =>, where, as usual, for any two events a,b belonging to probability 
space (£2,B,P), b=$a =b'v a =b'\(a&.b). However, note that [7] 

(2.11) P{b =>a)= \-P(b) + P(a&b) = P{a\b) + (P(a'\b)P(b')) > P(a\b), 
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with strict inequality holding in general, unless P(b) = 1 or P(a\b) =1.   In fact, 
Lewis proved the fundamental negative result: (See also the recent work [5].) 

THEOREM 2.1. ( D. Lewis [22]) In general, there does not exist any 
trivializing CEA. D 

Nevertheless, the above result does not preclude non-trivializing boolean and 
other CEA's from existing. Despite many positive properties [19], the chief 
drawback of previously proposed CEA (all using three-valued logic approaches) 
is their non-boolean structure, and consequent incompatibility with many of the 
standard laws and extensive results of probability theory. For a history of the 
development of non-boolean CEA up to five years ago, again see Goodman [7]. 

2.2. PSCEA: a non-trivializing boolean CEA. Three groups 
independently derived a similar non-triviaüzing boolean CEA: Van Fraasen, 
utilizing "Stalnaker Bernoulli conditionals" [30]; McGee, motivated by utility/ 
rational betting considerations [23]; and Goodman & Nguyen [17], utilizing an 
algebraic analogue with arithmetic division as an infinite series and following up 
a comment of Bamber [2] concerning the representation of conditional 
probabilities as unconditional infinite trial branching processes. In short, this 
CEA, which we call the product space CEA (or PSCEA, for short), is 
constructed as follows (see [18] for further details and proofs): Let (ß,ß,P) be 
a given probability space. Then, form its extension (Q0,B0,P0) and mapping y/ 
= (.1..): B2 -» B0 by defining (Q0,50,P0) as that product probability space formed 
out of a countable infinity of copies of (Cl,B,P) (as its identical marginal). 
Hence, ft0 = ß x ß x ß x.„; B0 = sigma algebra generated by (B x B x B 
x...), etc. Define also, for any a, b in B, the conditional event {a \b) as: 

(2.12) (a \b) = (a &b \b) = V ((b J x (a &b) x Q0) (direct form) 
7=0 

*-l 
(2.13) = V ((b y x (a &b)x£l0) v ((b fx(a \b)), fc=l,2,3,... (recursive form), 

7=0 
where the exponential-cartesian product notation holds for any c,d e B 

c x c x... x c x d x d x... x d, if j, k are positive integers 

(2.14)     cJ xdk =■ 

j factors k factors 
c x c x... x e,  if j is a positive integer and k = 0 
*" v ' 

j factors 
dxdx...xd, if j = 0 and k is a positive integer, 
^ v ' 

k factors 

It follows from (2.12) that the ordinary membership function §(a lfc):Q -> 
{0,1} (unlike the three-valued ones corresponding to previously proposed CEA) 
corresponding to (a\b) is given for any ffl. = (co„ co2, ü)3,...) in ß0,  where for 
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any positive integer,/, (2.15) implies (2.16): 

(2.15) ♦(*)(«,) = Wb)(.<o2) = ...= W)«»j.d = 0 < <Kfc)(0);) (=1), 
(2.16) *(a I fe)(ffi) = ♦(« lb)(co;) (= <Ka)(co,.)). 

The natural isomorphic imbedding here of B into B0 is simply: 

(2.17) a   <->   (ain) = axQ0,foralla e B 

and, indeed, for all a,b e B with P(b) > 0, P0((a \b)) = P(a \b). 

2.3. Basic properties of PSCEA. A brief listing of properties of 
PSCEA is provided below, valid for any given probability space (Cl,B,P) and 
any a,b,c,d, e B, all derivable from use of the basic recursive definition for k=l 
in eq.(2.13) and the structure of (Q0,fi0,P0) (again, see [18]): 
(i) Fixed antecedent combinations compatible with Comment 1 of Section 2.1. 

(2.18) (a \b) & (c \b) = (a &c \b),   (a \b) \ (c \b) = (a vc \b),  (a\b)' = {a'\b), 
(2.19) P0((a 16) & (c Ifc)) = P(a & c I fc), P0( (a \b) v (c lb)) = P(a\c\b), 
(2.20) P0((a Ifc)') = P(a 'I fc) = 1- P(a \b) = 1-P0((a \b)). 

(ii) Binary logical combinations.    The following are all extendible to any 
number of arguments where 

(2.21) (a\b)&(c\d) = (A\bvd),   (a \b) v (c \d) = (P. I b v d) (formalisms) 
(2.22) A = (a &fc &c &<f) v ((a &fc &d ) x(c W)) v ((b '&c &d )x(a\b )), 
(2.23) B = (a &b )v(c &d) v ((a '&& &d )x(c Id)) v ((b '&c '&d )x(a \b )), 
(2.24) P0((a \b)&(c \d)) = P0(A )IP(Jb vd), 
(2.25) P0 ((a \b)w(c \d)) = P0(B )IP(b v d) 

= P(a Ifc ) +P(c \d ) - P0((a Ifc) & (c k/)), 
(2.26)P0(A) =P (a Scb&cSui) +(P(a &b Scd )P{c I d)) +(P(b '&c &d)P(a \b)), 
(2.27) Pa{B) =P((a &J> )v(c &J ))+(P(a '&b &d')P(c \d ))+(P(b '&c '&d )P(a \b)). 

In particular, note the combinations of an unconditional and conditional 

(2.28) P0((a \b)&(c \Q)) = P{a &b &c) + (P(b '&c )P(a \b )), 
(2.29) (a I b) & {b I Q.) = (a & b I £1) (modus ponens) 

whence (a\b) and (fo I Q) are necessarily always P0-independent. 
(iii)    Other properties including: Higher order conditioning; Partial ordering, 
extending unconditional event ordering; Compatibility with probability ordering. 

2.4. Additional key properties of PSCEA. (Once more, see [18] 
for other results and all proofs.) In the following a, b, c, d, ajtbj e B, j =l,...,n, 
n =1,2,3    Apropos to Comment 2 in Section 2.1 concerning the sufficiency 
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assumption of independence of two conditional events), PSCEA satisfies: 
(iv)  Sufficiency for P„-independence. If a&b ,b are (four-way) P-independent of 
c&d, d, then (a \b) is P0-independent of (c \d). 
(v) General independence property, (^ \b{),..., (ajbj  is always P0-independent 
of (fc[ v ... vfcn !Q). (This can be extended to show (a, \bY) (ajbj is always 
P0-independent of any (c Iß), where c>i,v... vbB or c < (£,)'&...&(&„)'.) 
(vi) Characterization of PSCEA among all boolean CEA: 

THEOREM 2.2 (Goodman & Nguyen [18], pp. 296-301) Any boolean 
CEA which satisfies modus ponens and the general independence property must 
coincide with PSCEA, up to probability evaluations of all well-defined finite 
logical combinations (under &, v, () ) of conditional events. 0 

(vii) Compatibility between conditioning of measurable mappings and PSCEA 
y 

conditional events. Let (Sll,Bl,Pl) » (Q2,B2,Pl °Z~ ) indicate that 

Z: ß[ -» ß2 i
s a (#i,iy-measurable mapping which induces probability space 

(Q.2,B2,PioZ"1) from probability space (Cl^B^Pi). When some P2 is used in 

place of PioZ-1, it is understood that P2 = PfZ~x. Also, still using the notation 

(Q0,P0,P0;(.I..)) to indicate the PSCEA extension of probability space (ß,ß,P), 
define the PSCEA extension ofZ to be the mapping Z0: (Q^,, -» (Q2)0, where 

(2.30) Zom = (Z(co,), Z(co2),Z((o3),...), for all JQ. = (<a„ co2, co3,...) e (Q,)0. 

LEMMA 2.1. (Restatement of Goodman & Nguyen [18], Sects. 3.1, 3.4) If 

(Q,, Bl, Pl) > (fl2, &,, P, o Z"1) ÄoWs, ffcen does 

«Qt )0,(3 )0,(/>!>„)     Z°   > ((Q2)0,(ß2)0,(P, oZ_1)0) hold (where we can 

naturally identify (Pi)0°Z0'
1 with (P^Z"1),,) and say f/wf ( )0 /i/fa ZtoZ^.     D 

Next, replace Z by joint measurable mapping X,Y, in eq.(2.30), where 
(Q^P,) is simply (n,P,P), £22 is replaced by £2,xQ2, 52 by sigma algebra 
generated by (B, x BJ, and define 

(2.31) (X,7)(co) = (X(co).Y(co)) , for any co e Q. 

Thus, we have the following commutative diagram: 

(Q„ BltPoXl) 

X- 
(X,Y) 

(2.32) (Cl,B,P) ► (Q1xQ2,sigma(ß1xP.2),Po(X,F)-1) 

prpJ2, 

(n2, B^'Por1) 
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Finally, consider any a e B^ and b e B2 and corresponding conditional event in 
the form (a x b I Q[ x b ). Then, the following holds, using Lemma 2.1 and the 
basic structure of PSCEA: 

THEOREM 2.3. (Clarification of Goodman & Nguyen [18], Sects. 3.1, 
3.4) The commutative diagram of arbitrary joint measurable mappings in 
eq.(2.32) lifts to the commutative diagram 

jroji 

(2.33)     (no,B0,P„)- -+ mixa2)0,(.sigma(BlxB2))0,(Po(X, Y)'\) 

(("2)0. (£)„, (P°T\) 

where, we can naturally identify  {CllxQ.2)o with i^l^x (f22)o. (sigma(PiX52))0 

with sigma((S1)oX (BJU (P°*'')o) *** W. (P^1)«,) wM W1. a«* 
(P°(X,Y)~l)0 with P0o(X0,Yoy\   Moreover,    the basic compatibility relations 
always hold between conditioning of measurable mappings in unconditional 
events and joint measurable mappings in conditional events, all aeB^be B2: 

(2.34)   P(X e a I Y e b)     (= PQC^a) I TTx(b))) 
=P0((X, Y )0 e (a x b I Q,x ft ))   (=P0((X, 7 )„"' ((a x b I Q, x fr )))). D 

3. Relational event algebra. The relational event algebra (REA) 
problem was stated informally in Section 1.1. More rigorously, given any two 
functions /,g:[0,l]m -> [0,1], any probability space (Q,B,P), find a probability 
space (fi0,B0,P0) extending (Q,5,P) isomorphically (with B0 not dependent on P) 
and find mappings a(f), big): E" -» B0 such that the formal relations in eq.(l.l) 
are solvable where on the left-hand side P is replaced by P0, a by a(f)(c,d,e,h,...), 
b by b(g)(c, d, e, h,...), with possibly some constraint on the c,d,e,h ,... in B 
and the class of probability functions P. Solving the REA problem can be 
succinctly put as determining the commutative diagram: 

(3.1) (P(.), P(..),P(...),...) 

a(f), b{g)    4  
Bm  >B0 

f.g 
[0,1]" 

7 
FIND 

-»[0,1] 

As mentioned before, the CEA problem is that special case of the REA 
problem, where/and g are each ordinary division of two probabilities with the 
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restriction that each pair of probabilities corresponds to the first event being a 
subevent of the second. (See beginning of Section 2 and eq.(2.1).) Other special 
cases of the REA problem that have been treated include /, g being: constant- 
valued; weighted linear functions in multiple (common) arguments; polynomials 
or infinite series in one common argument; exponentials in one common 
argument; min and max. The first second and last case are considered here; further 
details for all but the last case can be found in [13]. 

3.1. REA problem for constant-valued functions. To begin 
with, it is obvious that for any given measurable space (ß,J5) other than the 
events 0 and Q, there do not exist any other constant-probability-valued events 
belonging to probability space (Q.,B,P), independent of all possible choices of 
P. However, by considering the extensions (Q0, B0, P0), in a modified sense 
such events can be constructed. Consider first eq.(l.l) where/ and g are any 
constants. Let probability space (C1,B,P), be given as before and consider any 
real numbers s, t in [0,1]. Next, independent of the choice of s, t, pick a fixed 
event, say, c in B, with 0 < P(c) < 1 and define for any integers 1 <j < k < n, 

(3.2) li(j,n;c) = c7'"1 xc'x c"';', 

utilizing notation similar to that in eq.(2.14). Note that all \i(j,n;c), as j varies, 
are mutually disjoint with the identical product probability evaluation 

(3-3) PBmn;c)) = (P(c)rlP(c), 

where product probability space (£2",sigma(5"),Pn) has n marginal spaces, each 
identical to (C1,B,P) with PSCEA extension ((^„.(sigma^)),,.^,^). Then, 
consider the following conditional event with evaluation due to eq.(3.3): 

(3.4)    Q(j,k,n;c) = ( V \i(i,n;c) I V\i(i,n;c) );   (P„)0(e(/,*,n;c)) = (k-j )/n. 
i=j+l i=l 

In addition, it is readily shown that for any fixed n, asj, k vary freely, \<j<k<n, 
the set of all finite disjoint unions of constant-probability events Q(j,k,n;c)) is 
closed with respect to all well-defined logical combinations for 
((Q'')0)(sigma(J5n))0,(f

,
n)0) and is not dependent upon the particular choice of 

integer n, event c e B, nor probability P, except for the assumption 0 < P(c) < 
1. In order for there to exist constant-probability events which act in a universal 
way — analogous to the role that the boundary constant-probability events 0 and 
Q0 play — to accommodate all possible values of s, t simultaneously, we must 
let n -» +oo (or be sufficiently large). One way of accomplishing this is to first 
form for each value of n, a new product probability space with first factor being 
(Q0, B0, P0) and second factor being ((Q°)0,(sigma(Bn))0,(Pn)0) and then formally 
allow n to approach +°o. By a slight abuse of notation, we will formally 
identify this space and limiting process with (Q0, B0, P0). Finally, with all of 
the above stated, we can choose any sequences of rationals converging to    s, f, 
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such as 0Vn)n=i,2.3,...-> s >   (^/n)n=u.3,... ~* x   an(^ define 

(3.5) 6(s,t)= limit Q(jn,k„,n;c),   9(0 = 6(0,0, 

with the convention, boundary values, and evaluations 

(3.6) 9(s,t) = 0,ifs>r,   9(0) = 0,    6(1) = n0, 
(3.7) P„(9(*,0) = max(r-j,0)     ,    Po(9(0) = t , all 0 < s,t < 1. 

Hence, an REA solution to/= s and g = t constants in [0,1], is simply to 
choose   a(f) = 8(s) , b(g) = 6(0- A summary of logical combination properties 
of such "constant-probability" events Q(s,t) and 9(0 are given below: 
For all 0 < Sj, < tj < 1, 0 < s < t < 1, all c„ dj in B, i=l,...,m,;'=l,...,n, m < n , 

(3.8) 6fai,fi) & 6 (s2,r2) = 9(max(j1,.y2), min^,,^)), 
(3.9) 9(f,) & 9(f2) = g^n^,^)),       9(f,) v 9(f2)  = 9(max(f1,f2)), 
(3.10) (9(0)'  = 9(U), (9(5))'&9(0=   9(5,0, 
(3.11) (c, x...xcm x 9(5,,^)) & (d{x...xdB x 9(j2,r2)) 

= (c,& 4)x...x(cm & O x dm+1x...xd„ x (9Cs„fi) & 9(s2,f2)), 

with all obvious corresponding probability evaluations by P0. 

3.2. REA problem for weighted linear functions. Consider the 
REA problem where, as before, (Cl,B,P) is a given probability space with c, e 
B,j=l,...,m. For all | = (^,...,0 in [0,l]m, now define 

(3.12) f(t) = w^ +...+wlmtm ,       £(0 = w21fj +...+w2mrm 

(3.13) 0 < w„ < 1 , wn+...+w,.m=l , i=l,2,   j=l,...,m. 

The following holds for any real w;, with disjoint ca replacing non-disjoint c;: 
m 

(3.14) XP(cy>-w; =  X ^ >w    ; 7m = {0,n}m-{(n,...,n)}, 

a= (ii.-.qj. wa=      Xw; ,c4 = (Cl+ $,)&...&(cm + ^j. 
{/: l<j<m and #; = 0} 

Then, the REA solution for this case using eq.(3.14) and constant-probability 
events as constructed in the last section is seen to consist of the following 
disjoint disjunctions of cartesian products 

(3.15) a(/)(c) =    Vc.x 9(wla),      fc(g)(£) =     V c8x 9(w2a) ; 
Q^Jm qeJm 

c= (c„...,cm) ,   wit=        Sw;; 

{j:l<j<m and qf=0} 
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Some logical combinations of REA solutions here: 

(3.16) a(/)(£) & fcfcXfi) =     V c. xedninCw^, w2J), 
qeJm 

(3.17) oOXÖ v fc(g)(£) =     V c. x6(max(wllt, w2g)), 

<3-18) (*(/)(£))' =     V c xe(wls4) v (c/&...& O- 

A typical example of the corresponding probability evaluations for (Cl0,B0,P0) is 

(3-19>        P0la(f)(£) & b(g)(£)] =    X c, min(w1(L, w2a)). 

Applications of the above results can be made to weighted coefficient 
polynomials and series in one variable (replacing in eq.(3.15) cy by c7'1), as well 
as for weighted combinations of exponentials in one or many arguments; but 
computational problems arise for the latter unless special cases are considered, 
such as independence of terms, etc. (see [15]). 

3.3 REA problem for min, max. In this case, we consider in 
eq.(l.l) REA solutions when one or both functions/, g involve minimum or 
maximum operations. For simplicity, consider/by itself in the form 

(3.20) fis,t) = max(s,0, for all s, t in [0,1] 

and seek for all events c, d belonging to probability space (Q.,B,P), a relational 
event a(f)(c, d) belonging to probability space (Q„,.B0,.P0) where for all P 

(3.21) Pa(a(f)(c, d)) = max(P(c), P{d)). 

First, it should be remarked that it can be proven that we cannot apply any 
techniques related to Section 3.2 where the weights are not dependent on P. 
However, a reasonable modified REA solution is possible based on the idea of 
choosing weights dependent upon P resulting in the form d, when P(c) < P{d), 
and c, when P(d) < P(c), etc. Using the REA solution in Section 3.2, we have: 

(3.22) a(f)(c,d) = (c & d) v ((c & d ) x 6(wftI)) v ((c '&d)x 0(wP2)), 
'l, if P(d)<P(c), 

(3.23) wpl =<J0,  ifP(c)<P(d),    wP2=- 

w, if P(c) = P(d) 

0, if P(d)<P(c), 

1, ifP(c)<P(^),  . 

1-w-, if P(c) = P(d) 

Dually, the case for/= min is also solvable by this approach. 
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4.  One point  random set coverages  and coverage     functions. 
One point random set coverages (or hittings) and their associated probabilities, 
called one point random set coverage functions, are the weakest way to specify 
random sets, analogous to the role measures of central tendency play with respect 
to probability distributions. In this section we show there is a class of fuzzy 
logics and a corresponding class of joint random sets which possess 
"homomorphic-like" properties with respect to probabilities of certain logical 
combinations of one point random set coverages, thereby identifying a part of 
fuzzy logic as a weakened form of probability. In turn, this motivates the 
proposed definition for conditional fuzzy sets in Section 5. Previous work in 
this area can be found in [16], [9], [10]. 

4.1. Preliminaries. In the following development, we assume all sets £>; 

finite, j e J , any finite index set, and repeatedly use the measurable map 
notation introduced in Sect. 2.4 (vii) applied to random sets and 0-1-valued 
random variables. As usual, the distinctness of a measurable map is up to the 
probability measure it induces. For any xeDJt denote the filter class on x with 
respect to Dj as FjiDj) = {c: x e c £ D, } and, as before, denote the ordinary set 
membership (or indicator) functional as <|>. Denote the power class of any £>; as 
P(Dj) and the double power class of Dj as PP(Dj).   If 5; is any random subset 

Si i 
of   Dj,    written    as    (Q,ß,P) L—> (P(D),PP(D),P°Sj   ),    use    the 

multivariable notation Sj = (Sj)j£j to indicate a collection of joint random 
subsets Sj of Dj, j e /. Similarly, define the corresponding collection of joint 0- 
1 random variables ty(Sj) = (<ty{Sj))JeJ , noting the (xj')-marginal random variable 
here is ty(Sj)(x), for any x e Dj J e /, yielding the relation 
S j   <-> <j>(Sy) = (<()(S ■ )(x)) .   Let t denote the separating union: 

J x   _    r.       j   _    F 

(4.1) UDj) = 

e Dj.j e J 

U (DjX{j}), HP(Dj))=   u (P(Dj)x{j}). 

The following commutative diagram summarizes the above relations for all x e 
DjJeJ: 

Sj 

(&,B,P) >(f(P\Dj), P(t(P(Z)y))),Po5/1) 

(4.2) .PüCirV^PoOKS,))-1) 

pr°W 

({0,1}, P ({0,1}),/»„MS,.)«)"1) 
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MMf^^&&^^^^^^^^m 
WM^W^^^^W'^^^^^m 

of one point random set coverages: ^^Smf^p- # f $&&^3 

fF(D;)) occurs iff ^SiM%,^»-^^fe&@Mrag 

1&FX<2>,3)not ^urs iff*£$$= 0,''; .«^   #^I*P?^«SI 

(4.4) ;-       tfAgJte^±;P.(ß;\FJP))) = ■«(♦(S/)X*) = 1» • ^ . 

'The induced probability 'measure PoS/1  through Po^S,)"1  is  completely 
determined by i^ corresponding; joint probability function gf , or eqiiivalently, 

by its corresponding: joint.cdf Ff/, where f,= ($),«,= (f,(*))x6ä ,ye/. Also, 

hise the multivariable notation Dj= (D^j, Ux}) = (ffo))^, , x, = (x^7 , cy = 
■'%)>/» Pr9=(^/-?i)^/i'etc.'' A copula, written cop:[0,l]"-^ [0,1]» is any joint 
cdf of one-dimensional marginal cdf s corresponding to the uniform distribution 
over [0,1], compatibly defined for n=l,2,... (see [3]). It will also be useful to 
consider the cocopula or DeMorgan transform of cop, i.e., cocop(f7) = l-cop(l/- 
tj), for all tj e [0,1]7. By Sklar's copula theorem [28], 

(4.5) F (r) = cop((F w(^)),eDy ,,,), i = (txj)x sDjjej. [0,1]"' 

°'iff<0' f   f;W,ifr = l, 
l-f,W,if0<,<l,      ,     (,) =     J 

1, if l < r. I     1/w,ut   u' 
(4-6)     V>(') = - 

»#:- where, in particular, 

(4.7) F{](x)(0) = 8tj(i)(0) = 1-f/x), all * 6 D,, j e /. 

The following is needed : 

LEMMA 4.1 (A version of the Mobius inversion formula [27]) Given any 
finite nonempty set J and a collection of joint 0-1-valued r.v. 's Tj = (7});W, 

T 
(ß,B,P) L^({0,l},P{[0,l}),PoTj~

i)withP(TJ=l)=Xj,P(Jj=0)=l-Xj,je 

/, and given any setL^J, with the convention of letting P( & (T, = 0)) = 

cop((X));e0) = 1 and cocop((X,)je0) = 0. Then, 

(4.8) P(&(7} = 1)&   & (7}=0))  =    It-rt     &     (X, =0)) 
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= cop(XL;Xj_L), 

where we define 

(4.9) cöp(XL;Xy_,) = X(-i)«>cop((l - Xj)jeICu(J.L)) 
KcL 

= 8(L=0) + XR-^W^W-«). 

8(. = ..) denoting the Krönecker delta function, noting the special cases 

(4.10) cöp(Xy)= cöp(Xy;X0) =       ^-Vf^^cocopfoj)^), 
0*KQJ 

(4.11) cöp(X0;Xy)  =  l-cocop((X.);6y) = cop((l-Xy);€y). D 

4.2. Solution class of joint random sets one point coverage 
equivalent to given fuzzy sets. Next, given any collection of fuzzy set 
membership functions f,, f/.Dj -> [0,1], j e /, consider S(fy), the class of all 
collections of joint random subsets S(fj) of Dj which are one point coverage 
equivalent tofj, i.e., each S(f,) is any random subset of DJf which is one point 
coverage equivalent to fjtj e J, i.e., 

(4.12) P(x e S(fj)) = f/jc), for all x e Dp j e J, 

compatible with the converse relation in eq.(4.4).  It can be shown that when 
f=<t>(a,), aj e B,je J, then necessarily S (f,) = {a,}, a,= (a/)/e/ 

THEOREM 4.1 (Goodman [10]) Given any collection of fuzzy sets fy, as 

above, then 5(fy) is bijective to <t)(5(f,)) = {<)>(S(f,))): S(f,) e  S(f,)}, which is 
bijective to {F   = cop((F     )       _ ): cop:[0,l]tD^-> [0,1] is arbitrary}. 

tj f/*) x e Drj e J 

Proof. This follows by noting any choice of cop always makes F a 

legitimate cdf corresponding to fixed one point coverage functions f,. D 

By applying Lemma 4.1 and eq.(4.7), the explicit relation between each S(fy) and 
choice of cop generating them is given for any CJ=(C^J , cs e B, 

(4.13) P(S(fy) = cj) =P(& (5(f) = c ■)) 

= P(    &    ((|)(5(f.))U) = l)&       &      (<t>(5(f))W = 0)) 
xecjJzJ xeDj-Cj.jeJ 

=   cöp(fncj)(xncj)y,fnD].Cj)(xnDj.Cj))). 

In particular, when cop = min, one can easily show (appealing, e.g., to the 
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unique determination of cdf s for 0-1-valued r.v.'s by all joint evaluations at 0 - 

see Lemma 4.1 — and by eq.(4.5)) this is equivalent to choosing the nested 

random sets 5(f;) = f/'[£/,l] = [x: xeDjt f} (x) >U } as the one point coverage 

equivalent random sets for the same fixed U, a uniformly distributed random 

variable over [0,1]. When cop = prod (arithmetic product) the corresponding 

collection of joint random sets is such that S(fj) corresponds to <j>(5(f,)) being a 

collection of independent 0-1 r.v.'s, and hence S(fj) also corresponds to the 

maximal entropy solution in S(fj). 

4.3. Homomorphic-like relations between fuzzy logic and one 
point coverages. Call a pair of operators &j,v,:[0,l]" -» [0,1], well-defined 
for n=l,2,3,.., & fuzzy logic conjunction, disjunction pair, if both operators are 
pointwise nondecreasing with &[ < v„ and for any 0<t<\, j=\,..,n, letting 
r=tl&l...&ltn, s=r1Vi...v1rn, if for any f=0, then n=0 and s= fiV^/v,^ 
vifH-ivi-vi'»ft» and if any f;- = 1, then s = 1 and r= tl&l...&ltj.,&ltj+l&l...&ltn . 
Note that any cop.cocop pair qualifies as a fuzzy logic conjunction, disjunction 
pair, as does any t-norm, t-conorm pair (certain associative, commutative 
functions, see [16]). For example, (min.max), (prod, probsum) are two fuzzy 
conjunction, disjunction pairs which are also both cop, cocop and t-norm, t- 
conorm pairs, where probsum is defined as the DeMorgan transform of prod. 

THEOREM 4.2. Let (cop, cocop) be arbitrary. Then (referring to eq.(4.10): 
(i)   (cop, cocop) is a conjunctive disjunctive fuzzy logic operation pair which 
in general is non-DeMorgan. 
(ii) For any choice of fuzzy set membership functions symbolically, f/.Dj -> 
[0,1Y and any 5(f,) e S (f,) determined through cop (as in Theorem 4.1), and any 
XjeDj, 

(4.14)  cöptf/x,)) = P( & (xj € S(f,))),    cocop (Uxj)) = P( V (jr, € 5(f;))). 
jeJ jsJ 

(iii) /^(cop.cocop) is any continuous t-norm, t-conorm pair, then  cop   = cop 

i^(cop.cocop) is either (min.max), (prod, probsum), or any ordinal sum of 
(prod,probsum). 

Proof. Part (i) follows from (ii). Part (ii) left-hand side follows from 
Lemma 4.1 with 7} = <(>(S(f;)), L=J.    (ii) right-hand side follows from the 

DeMorgan expansion of />( V(x. eS(f.))) = 1-P( &(<))( 5(f.))(x .) = 0)) and 
;'e7     J J j<=J J 1 

the last result, (iii) follows from [10], Corollary 2.1. D 

The validity for cop = cop without using the sufficiency conditions in (iii) 

above are apparently not known at present. Call the family of all (cop.cocop) 
pairs listed in Theorem 4.2 (iii), the semi-distributive family (see [10]), because 
of additional properties possessed by them. Call the much larger family of all 
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(cop ,cocop) pairs the alternating signed sum family. cöp is a more 

restricted function of cocop than a modular transform (i.e., when cop is 

evaluated at two arguments). In fact, Frank has found a nontrivial family 
characterizing all pairs of t-norms and t-conorms which are modular to each 
other, a proper subfamily of which consists of also copula, cocopula pairs 
which, in turn, properly contains the semi-distributive family [6]. When we 
choose as a fuzzy logic conjunction disjunction pair (&LV,) = (cop,cocop), 
eq.(4.14) shows there is a "homomorphic-like" relation for conjunctions and 
disjunctions separately between fuzzy logic and corresponding probabilities of 
conjunction and disjunctions of one point random set coverages. It is natural to 
inquire what other classes of fuzzy logic operators produce homomorphic-like 
relations between various well-defined combinations of conjunctions and 
disjunctions with corresponding probabilities of combinations of one point 
random set coverages. One such has been determined: 

THEOREM   4.3 (Goodman [10])    Suppose (&1.VJ is any continuous 
conjunction, disjunction fuzzy logic pair. Then, the following are equivalent: 
(i)  For any choice of fy:Djf->[0,l], i=l,...,m, j=l,...,n, m,n > 1,   there is a 
collection of joint one point coverage equivalent random sets S(fjj) , i=l,...,m, 
y=l,...,n, such that for allx^ e Djy, the homomorphic-like relation holds: 

n 
(4.15) &,( V,(i^))) = P(& ( V (Xij s 5(f9)))) 

(ii) Same statement as (i), but with vt over &, and v over &. 
(iii) (&„v,) is any member of the semi-distributive family. 0 

By inspection, it is easily verified (using, e.g., the nested random set forms 
corresponding to min and the mutual independence property corresponding to 
prod) that the fuzzy logic operator pairs (.&i,v{) - (min.max) and (prod,probsum) 
produce homomorphic-like relations between all well-defined finite 
combinations of these operators applied to fuzzy set membership values and 
probabilities of corresponding combinations of one point coverages. (The issue 
of whether ordinal sums also enjoy this property remains open.) However, it is 
also quickly shown for the case D-=D, all j e /, the pair (min,max) actually 
produces full conjunction-disjunction homomorphisms between arbitrary 
combinations of fuzzy set membership functions and corresponding 
combinations of one point coverage equivalent random sets. This fact was 
discovered in a different form many years ago by Negoita & Ralescu [24] in 
terms of non-random level sets, corresponding to the nested random sets 
discussed above. On the other hand, the pair (prod,probsum) can be ruled out of 
producing actual conjunction-disjunction homomorphisms by noting that the 
collection of all jointly independent <|>(S(f)) indexed by D, as f:£» -» [0,1] varies 
arbitrarily, is not even closed with respect to min, max (corresponding to set 
intersection and union). For example, note that for any four 0-1 r.v's7}, 
7=1,2,3,4, />(min(r1,r2,r3,r4) = 0) vt/>(min(r1,r2)=0)P(min(r3,r4)=0), generally. 
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4.4     Some   applications   of homomorphic-like   representation 
to fuzzy logic   concepts.     The following concepts, in one related form or 
another,  can be found in any comprehensive treatise on fuzzy logic [4] where 
i&^v^ is some chosen fuzzy logic conjunction, disjunction pair. However, in 
order to apply the homomorphic-like relations in Theorems 4.2    and 4.3, we 
now assume (&i,v,) is any member of the alternating signed sum family, 
(i) Fuzzy negation. Here, 1-f is called the fuzzy negation of i:D -> [0,1].   By 

noting the almost trivial relation, x e  5(l-f) iff   not( x e  (5(l-f))   the 
homomorphic relations presented in Theorems 4.2   and 4.3 can be reinterpreted 

to include negations.   However, in general it is not true that 5(f) = (S(l-f)) 
even when they are generated by copulas in  the semi-distributive family, 
compatible with the fact that fuzzy logic as a truth functional logic cannot be 
boolean. 
(ii) Fuzzy logic projection. For any f:D{xD2 -»[0,1], xeDlt the fuzzy logic 

projection of f at x is 

(4.16) fuzzy proj.töCx) = Vt (f(*,y))=P(   V   (x e 5(f(.,y)))), 
x e D2 y e T>i 

a probability projection of a corresponding random set. 
(iii) Fuzzy logic modifiers. These correspond to "very", "more or less", "most", 
etc., where for any f:D-> [0,1], modifier A:[0,1] -» [0,1] is applied 
compositionally as h°i:D -» [0,1]. Then, for any xe D, 

(4.17) A(f(x)) = P(x e S(hof)) = P(f(x) e 5(A)) = P(x e f'(5(A))) 

also with obvious probability interpretations. 
(iv) Fuzzy extension principle. In its simplest form, let f:£>-> [0,1], g:D —> E. 
Then the f-fuzzification of g is g[f\: E —» [0,1] where at any y e E, 

(4.18) g[f](y)=     V,    (f(x))  = P(y e *(5(f))), 
•*yeg-'0>) 

the one point coverage function of the g function of a random set representing f. 
A more complicated situation occurs when f above is defined as the fuzzy 
cartesian product x(f, :xDj -> [0,1] of fjiDj-*[0,1], j e /, given at any Xj e 
[0,l]y as x,f, (xj) = (fe^f/*,)). Then, restricting (Sc^v^ to only be in the semi- 
distributive family, we have in place of (4.18) 

(4.19) g[f](y)=     V,    (&,(fy (*,))) 

=   P(    V     (&(xjeS(l))))=P(yeg(S(fJ))), 

a natural generalization of (4.18). 
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(v) Fuzzy weighted averages. For any fyDj -» [0,1], f2:ö2 -» [0,1] and weight 
w, 0 < w < 1, the fuzzy weighted average of flt f2 at any xe Dltye D2, is 

(4.20) (wft(x)) + ((l-w)f2(y)) = P0(a), 

(4.21) a =   [(xeS(fl))&(yeS(f2))} v [(xeS(fl))&(yeS(f2)) x 9(w)] 
v[(x« 5(^)^6 5(f2))x6(l-w)]. 

This is achieved by application of the REA solution to weighted linear functions 
of probabilities (Section 3.2); in this case the latter are the one point coverage 
ones. 
(vi) Fuzzy membership functions of overall populations. This is inspired by 
the well-known example in approximate reasoning "Most blond Swedes are tall" 
where the membership functions corresponding to "blond & tall" and to "blond" 
are averaged over the population of Swedes and then one divides the first by the 
second to obtain the ratio of overall tallness to blondness, to which the fuzzy set 
corresponding to modifier "most" is then applied ([4], pp. 173-185). More 
generally, let ff.D -» [0,l],y=l,2, and consider two measurable mappings 

X > (D,P(D),P°Xl) 
(4.22) (Cl,B,P) -<^2~L 

5(f) ► (P (D),P P (D ),P°S'1) 

where X is a designated population weighting r.v. Then, the relevant fuzzy logic 
computations are, noting the similarity to Robbin's original application of the 
Fubini iterated integral theorem [25] and denoting expectation by £*(), 

(4.23) Ex(f2(X))=  \f2(x)dP(X\x)) = \     U((S(f2)((o))(x)dP((0)dP(Xl(x)) 
x eD xeD (öeCl 

=  1        JwS(f2)((i»)(x)dP(X-l(x))dP«a)=   J P(XeS(f2)(o»)<tf>(co) 
coeQxeD ooeQ 

= P(X 6 S(f2)) , 

and similarly, 

(4.24) Ex(f,(X) &, f2(X)) = P(X e 5(f,&,f2))   = P(X e (5(f,) n S(fj))). 

Hence, the overall population tendency to attribute 1, given attribute 2 is, using 
(4.23) and (4.24), is 

(4.25) Ex(f,(X)&, f2(X)) /Ex(f2(X)) = P(Xe 5(f,) IXe5(f2)), 
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showing that this proposed fuzzy logic quantity is the same as the conditional 
probability of one point coverage of random weighting with respect to 5(f [), 
given a one point coverage of the random weighting with respect to S(f2). 

5. Use of one point coverage functions to define conditional 
fuzzy logic. This work extends earlier ideas in [11]. (For a detailed history of 
the problem of attempting a sound definition for conditional fuzzy sets see 
Goodman [8].) Even for the special case of ordinary events, until the recent 
fuller development of PSCEA, many basic difficulties arose with the use of 
other CEA. It seems reasonable that whatever definitions we settle upon for 
conditional fuzzy sets and logic, they should generalize conditional events and 
logic of PSCEA. In addition, we have seen in the last sections that 
homomorphic-like relations can be established between aspects of fuzzy logic 
and a truth-functional-related part of probability theory, namely the probability 
evaluations of logical combinations of one point coverages for random sets 
corresponding to given fuzzy sets. 

Thus, it is also reasonable to expect that the definition of conditional fuzzy 
sets and associated logic should tie-in with homomorphic-like relations with one 
point coverage equivalent random sets. This connection becomes more evident 
by considering the fundamental lifting and compatibility relations for joint 
measurable mappings provided in Theorem 2.3: Let f, :D;-» [0,1],7=1,2, be any 
two fuzzy set membership functions. In Theorem 2.3 and commutative 
diagrams (2.32), (2.33), let (fl,5,F) be as before, any given probability space, 
but now replace X by S(f{), Y by S(f2), for any joint pair of one point coverage 
equivalent random sets S(f;) eS(f;), j= 1,2. Also, replace Q; by P (£>,), S; by 
PP(Dj), and in eq.(2.34), event a e Ät by filter class F^D,) e PP(DX) and event 
be B2by filter class Fy(D2) e PP(D2), for any choice of x e £>, , y e D2 . 
Temporarily, we assume f2(y) > 0. Then, in addition to the result that diagram 
(2.33) lifts (2.32) via ()0 with the corresponding joint random set and one point 
coverage interpretation, eq.(2.34) now becomes (recalling eq.(4.3)) 

(5.1) P(xeS(fl)\yeS(f2)) 

= F0((S(f1),5(f2))0 e ( FX(D{) x Fy(D2) I P(Dt) x Fy(D2))). 

Note the distinction between the expression in (5.1) and the one point coverage 
function of the conditional random set (5(f,)x5(f2) I D1xS(f2)), (where as usual 
for any, coeQ, (S(f,)x5(f2) I £>!xS(f2))(CD) = (5(f!)(co)x5(f2)(co) I D<XS(X2)(Sü)). 

Both (5(f,),5(f2))0 and (5(f,)x5(f2) I Z),xS(f2)) are based on the same measurable 
spaces, but differ on the induced probability measures (see eq.(5.3). The latter in 
general produces complex infinite series evaluations for its one point coverage 
function (as originally attested to in [12]): For any w = (jci,y1,x2,y2,...) in 
(D{xD2)0, using eqs.(2.12) and (4.8), 

(5.2) P(u e (S(ft)xS(f2) I D,x5(f2))) 
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= £ P( (Xj e S(f,)) & (y,. € 5(f2)) & & (y, £ 5(f2))) 
;=0 

=    XcOpCfiC^O.fjO';) ;f2()-!),...,f2(>';-l))- 

(5.3) 

(ß,B,P) 

(P (ÖJxP (D2))0,(sigma(P P (DL)xP P (D2)))0,P0»(5(f1),5(f2))0
1) 

{S(i\),S(f2))0 

{S^Stfz) I D,xS(f2)) 

((P (D,) xP (D2))0, (sigma(P P (D,) x P P (D2)))0)/'o(5(f1)x5(f2) I D.xS^))1) 

On the other hand, the expression in eq.(5.1) quickly simplifies to the form 

(5.4) P(xeS(f1)l)'€5(f2)) 

= P(((|)(5(f1))W=l) & (<t>(S(f2))(y)=D) / P(<KS(f2))(y)=l) 

= cöp(f1W,f2ö;))/f2Cy)> 

using eq.(4.14) and the assumption that f2(y) > 0. 

Thus, we are led in this case to define the conditional fuzzy set (filf2) as 

(5.5) (f JfjXjroO = P(* e S(f,) I y e 5(f2)) = cop (f,(jc)/2(y)) / f2(y)). 

The case of f2(y) = 0, is treated as a natural extension of the situation for the 
PSCEA conditional event membership function 4>(aib) in eqs.(2.15), (2.16), 
namely, for any u = (*i,yi,*2,y2,...), with xy in Du Vj in D2: 

(5.6) If f2(v,) = f2(y2) =...= f2(y,,,) = 0<f2(yy), then, by def. (f,lf2)(M) = (f1lf2)(x;,y>), 

noting that the case for vacuous zero values in eq.(5.6) occurs for; =1. 

(5.7) If f2(y,) = f2(y2) =...= f2(y,) = ... = 0, then by def. (ftlf2)(M) = 0. 

More concisely, eqs.(5.6), (5.7) are equivalent to 

(5.8) (f,lf2)(M) =    L    II 8(f2(y,.)=0)-(f1lf2)(;c;,y;.), 
;=1 i=l 
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where (filf2)0t/,;y,) is as in eq.(5.5). 
Furthermore, let us define logical operations between such conditional fuzzy 

membership motivated by the homomorphic-like relations discussed earlier and 
compatible with the definition in eqs.(5.5)-(5.8). For example, binary 
conjunction here between (fjfj) and (f3lf4) for any arguments u = (xi,yi^c2,y2,...), 
v = (witZi,w^2'-) is defined by first determining that j and k so that f2(y,) = 

f2(y2) =-= fifyj-i) = ° < W- f4(Zi) = f4fe) =-= f4fe-i) = 0 < UzJ, 
assuming the two trivial cases of 0-value in eq.(5.7) are avoided here. Thus, 
f2(y;), f4(z*) > 0. Next, choose any copula and corresponding pair (&i,v,) (= 
(cöp.cocop)) in the alternating sum family and consider the joint one point 

coverage equivalent random subsets of Dp S(fj), 7= 1,2,3,4 determined through 
cop (as in Theorem 4.1, e.g.). Denote one point coverage events a = (Xj e S(f{)) 
(= (<|>(S(f,))=l) = WfJYH. FXj (A)), etc.), b = (y, e 5(f2)) ,c = {w^ S(f3)), d 

= (zt e S(f4)) (all belonging to the probability space (Gl,B,P)). Finally, define 
conditional fuzzy logic operator &! as 

(5.9) ((f1lf2)&1(f3lf4))(M,v) = (f&Xu) &,(f3lf4)(v) = Pa{{a\b) & (c\d)) 
= P0(A)IP{bxd)), 

(5.10) PB(A) =P (a &b&c&d) +(P(a &.b &A )P{c I d ))+(P(b '&c &J )P(a \b)), 

using eqs.(2.24), (2.26). In turn, each of the components needed for the full 
evaluation of eq.(5.9) are readily obtainable using, e.g., the bottom parts of 
eq.(4.13) and/or eq.(4.14). Specifically, we have: 

(5.11) P(a&b&c&d) = cöp(f1(^.),f2(y;),f3(wJt),f4(zt)), 

(5.12) P{a &b&d)       = cöp (f,(x;) ,f2(y,); f4(zt)), 
(5.13) P(b'&c&d)      =  cöp(f3(wt),f4(Zjt); f2(y,)), 

(5.14) P{a \b ) = (fJfjX^y,) = ( cop (Ux^iyj))/^), 
(5.15) P(c \d) = (f^XvtW = (cöp(f3(wt),f4(zt))/f4(zt), 

(5.16) P(bvd) = cocop(f2(y,), f4(zt)). 

Also, using eqs.(2.25), (2.27), we obtain similarly, 

(5.17) ((f,lf2)vl(f3lf4))(M,v) = (f,lf2)(M) v,(f3lf4)(v) = P0((a\b) v (c\d)) 
= P{a \b ) +P(c \d) - P0{{a \b) & (c \d)), 

all obviously obtainable from eqs.(5.9)-(5.16). For fuzzy complementation, 

(5.18) (f,lf2) t«) = ((f,lf2)(")) '= P((alb) ) = l-/>(alb) = P(a tb) = l-(f,lf2)^) = 
Hf&Xxj, yj) = (f2(y,.)- cop (fM&fyj))) I f2(y;) =   cop (f2(y,); f ,(*,)) / f2(y,), 

all consistent. Combinations of conjunctions and disjunctions for multiple 
arguments follow a similar pattern of definition. The following summarizes 
some of the basic properties of fuzzy conditionals sets and logic, recalling  here 
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the multivariable notation introduced earlier: 
THEOREM 5.1. Consider any collection of fuzzy set membership 

functions fjiDj-t [0,1]7, any choice of cop producing joint one point coverage 
equivalent random subsets 5(f,) ofDj with respect to probability space (0.,B,P), 
and define fuzzy conditional membership functions and logic as in eqs.(5.5)- 
(5.18): 
(i) When, any two fuzzy set membership functions reduce to ordinary set 
membership functions such asfl = ^(a{), f2 = <(>(a2), ax, a2 e B, then 

(filf2) = <Ka,x a21 £>! x a2)), 

the ordinary membership function of a PSCEA conditional event in product 
form. 
(ii)   All    well-defined   combinations   of   fuzzy    logical   operations   over 
(f1lf2),(f3lf4),..-, when ij = $(#/)> reduce to their PSCEA counterparts. 
(iii) When f2=l identically, we have the natural identification 

(fi I f2) = f. 

(iv) The following is extendible to any number of arguments: When f2 = f4 = f, 

(f1if)&1(f3lf) = (f1«fe1f31 f),       (f1lf)v1(f3!f) = (flVlf31 f) , 

where for the unconditional computations f1&lf3 = cop(f!,f3) , f^f, = 

cocop(f!,f3), etc. 

(v) Modus ponens holds for conditional fuzzy logic as constructed here: 

(f,lf2)&, f2= f,&,f2. 

Proof. Straightforward, from the construction. Details are omitted here. D 

Thus, a reasonable basis has been established for conditional fuzzy logic 
extending both PSCEA for ordinary events and unconditional fuzzy logic. The 
resulting conditional fuzzy logic is not significantly more difficult to compute 
than is PSCEA itself. 

6. Three examples reconsidered. We show here briefly how the ideas 
developed in the previous sections can be applied to the examples of Section 1.3. 
Example 1. (See eq.(1.3).) Applying the REA solution for weighted linear 
functions from Section 3.2, we obtain 

(6.1) P0(a&b) = P(c&d&e)    +        (min(w11+w12, w21+w22))P(c&<f&e') 
+ (mi^Wn+w^, w2l+w23))P(cStd &e) + (min(w12+wl3, w12+w23))P(c 7kd&e) 
+ (miniw^w-x^Ptc '8cd'&e)   + min(w12,w22))/

J(c'&<i&e') 
+ (min(wu,w2l))P(c&d' &e'). 
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Then, choosing, e.g., the absolute probability distance function, eq.(6.1) yields 

(6.2) DPa{a,b) = P0(a) + P0(b) - 2P0(a & b) 

= \(wn+wn)-(w21+wn)\P(c8ul&e') + \(wn+WiJ)-(w21+w73)\P(c&d'&.e) 
+ \(wn+wl3)-(w22+w23)\P(c' & d&e) +    iwiyW^Pic'&d'&e) 
+ \wl2-w22\P(c'&d&e') + \wn-w21\P(cScd'&e'). 

In turn, use the above expression to test hypotheses a * b vs. a = b 
following the procedure in eqs.(1.13)-(1.16), where, e.g., the fixed significance 
level is 

(6.3) a0 = FD(DPo(a,b)) = (DPo(a,b))2Q -2DPo(a,b)) 

using eq.(6.2) for full evaluation. 
Example 2. Specializing the conjunctive probability formula in 

eqs.(2.24), (2.26), 

(6.4) P0(a &b) = P0((c\d)&(c\e)) = PJA) / P(d v e), 
(6.5) P(A)=   P{c&d&.e)+   (P{c&d&e')P(c\e)) +  (P(c&d"&.e)P(c\d)). 

Using, e.g., the relative distance to test the hypotheses   a * b vs. a = b, 
eq.(6.4) allows us to calculate 

P(c\d) + P(c\e) - 2P(a&b) 
(6.6) RP(a,b) = P0(a + b)/P0(awb) =    2 . 

P° P(c\d) + P(c\e) - P0(a&.b) 

Then, we can test hypotheses a * b vs. a = b , by using eqs.(1.13)-(1.16), where 
now the fixed significance level is 

(6.7) oc0 = FR(RPg (a,b)) = (*PO (a,b))\ 

using eq.(6.6) for full evaluation. 
Example 3. We now suppose that in the fuzzy logic interpretation in 

eq.(1.6) for Model 1, v, is max, while for Model 2, v2 is chosen compatible with 
conditional fuzzy logic as outlined in Section 5. We also simplify the models 
further: The attribute "fairly long" and "long" are identified, thus avoiding the 
exponentiation of 1.5 (though this can also be treated - but to avoid 
complications, we make the assumption). We also identify "large" with 
medium". Model 2 can be evaluated from eqs.(5.9)-(5.17), where 

(6.8) c = (x, e 5(f,)) , d = (w, e 5(f3)),     e= (z, e S(Q), 
fl(*l) = Wlngth(A)),     f2(V.) = 1,   fj(w,) = fmedium(#(Q)) . 
f..(Zi) = faccuratoW . *i = higth(A),   v, arbitrary, w, = #(Q), z{=L, 
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On the other hand, we are here interested in comparing the two models via 
probability representations and use of probabilistic distance functions. In 
summary, all of the above simplifies to 

(6.9) 

Model 1: t(a) - PJa) = max(P(c2), P(rf)) 

VS. 

Model 2 : t(b) = PAb) = PA(c I Q) v (</1 e)) 

In turn, applying the REA approach to max in Section 3.5 and using 
PSCEA via eq.(5.17) with d = £2, we obtain the description events according to 
each expert as 

(6.10) a = (<?&d) v ((c2&<Ox8(w,,,)) v (((c2)'&d)xQ(wP2)), 

(6.11) c2 = cxc, (c2)'= (cxc')vc'. 

(6.12) b= cv (d\e) = c v (d&e) v((c'&e')x(d\e)) 

Then again using PSCEA and simplifying, 

(6.13) P0(a&b) = P(c&d)P(c) + P(c&d )P(c)wPA + P(.c&d)P{c')wP2 

+P(c'&d&e)wP2   + P(c'&d&e')P(d\e)wPa . 

In turn, each expression in eq.(6.13) can be fully evaluated via the use of 
eq.(4.13) again: 

(6.14) P(c&d)= c5p(f,(je,),fj(w3)),   P(cScd&e)= cöptfjK^z,);^*,), 

Pic'&d&e') = cop (fjtofcfiWAfc,)),    P(c) = f,(x,), 
P(c&d ) = cop (f 1(x1);f3(w1)) = P(c) - P{c&d),     P(d\e) = (f3l fO(w1Ä), 

etc., with all interpretations in terms of the original corresponding attributes 
given in eq.(6.8). Finally, eq.(6.13) can be used, together with the evaluations 
of the marginal probabilities P0(a), PB(b) in eq.(6.9) to obtain once more any of 
the probability distance measures used in Section 1.4 for testing the hypotheses 
of a * b vs. a = b. 
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